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We propose a method for  determining the coordinate functions to be employed in Galerkin 's  
method for  the solution of boundary problems,  which inc reases  significantly the prec is ion  of 
the calculations in a f i r s t  approximation.  

Galerkin 's  method, because  of i ts s implici ty  and universal i ty ,  has found wide application in many 
problems of mathemat ical  physics.  

An approximate  solution (0) of a boundary problem is represen ted  in the fo rm of a l inear  combination 
of coordinate functions 

n 

t~ = ~ C~u~. (1) 

The constants C i a r e  determined f rom the orthogonali ty condition [1]: 

V S 

Here  L is the dif ferent ia l  opera tor  of the boundary problem; F is the opera tor  of the boundary conditions. 

The functions u i must  possess  the proper ty  of completeness  in order  for  the approx imateso lu t ion  
(1) to converge to the exact solution. This p roper ty  is possessed,  in par t icular ,  by a lgebra ic  and t r i -  
gonometr ic  polynomials.  For  homogeneous boundary conditions the convergence may be improved sub- 
stantial ly by seeking 0 in the fo rm [1] 

= o (C + B x +  Dy + Ez + . . . ) .  (3) 

Here  w(x, y, z) is an a r b i t r a r y  function, which,  together  with its par t ia l  der ivat ives  of a r b i t r a r y  o rde r  in 
a region V, is nonnegative and continuous and sat isf ies  on the surface  of the region S the condition 

r (S) = 0. (4) 

As pointed out in [2], one of the fundamental drawbacks of Galerkinvs method is  the following, the 
proper t ies  of the boundary problem opera tor  a r e  accounted for by only a finite number of constants (Ci). 
Kantoroviehts  method, applied to ord inary  differential  equations [1], r emedies  this drawback only par -  
tially. 

The chief me r i t  of GalerkinTs method, namely its s implici ty,  is maintained only when, with sa t i s -  
f ac to ry  precis ion,  one can l imit  oneself  to the f i r s t  approximation in the sum (1). Fur the r  precis ion 
(second, and fur ther ,  approximations) leads to substantial  complexi ty in the computational formulas .  

We present  below a method for  select ing the coordinate  functions, which enables us to obtain a high 
degree  of prec is ion  with only the f i r s t  approximation. 

We r e s t r i c t  ourse lves  to a considerat ion of homogeneous boundary conditions of the f i r s t  kind. We 
i l lus t ra te  the method by using, as  an example,  the heat conduction equation for  an anisot ropic  homogeneous 
paral lelepiped with internal  heat sources:  

Institute of Rational Mechanics and Optics, Leningrad. Trans la ted  f rom Inzhenerno-Fiz icheski i  
Zhurnal,  Vol. 18, No. 2, pp. 309-315, February ,  1970. Original  a r t i c l e  submitted March 21, 1969. 

�9 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

227 



with the boundary  condi t ions:  

In d imens ion l e s s  f o r m ,  

~x O~t L O~t ~ O~t + qv = O 
o - 7  + "W;r + " oz, 

t ( j = _ + l j ) = 0 ;  / = x ,  y, z. 

a s s u m i n g  fo r  s impl i c i ty  that  q v  = const ,  we obtain 

O~N O2N O~N 
0 7  + l = 0; 

N ( ] =  • 1 ) = 0 ;  

~1~ &,~ T=J-. N-  
lj ' r 

F o r  the  d i f fe ren t ia l  o p e r a t o r  we  have the  e x p r e s s i o n  

026  ~ 02~ d2~ 
L (8) ~ e~ Ox-- z- + % 0 ~  ~ -  + e~ ~ + I. 

F o r  homogeneous  boundary  condi t ions  of the  f i r s t  kind, 

r O) ~ ~ (S). 

We seek  an app rox ima te  solut ion (~) in the  f o r m  (3), taking into account  the condi t ion (4). 
and, consequent ly ,  

I v = O. 

We r e s t r i c t  o u r s e l v e s  to  the f i r s t  app rox ima t ion  0 = Cr 
t ia l ly  use  K a n t o r o v i c h ' s  method.  We wr i t e  ~ in the f o r m  

~'~ = f2~c(~lyq)lZ; q)ly = 1 __~2; q91z = 1 - - z  ~ " 

Then  

L O) = e~f'~,%u%~ - -  f2~ 2 (%%~ § s~%u) § 1. 

The o r thogona l i ty  condit ions m a y  be  wr i t t en  as  fol lows [1]: 

i 1 

i" L (~) f~lll(~lzd~dz = O. 
0 0 

Afte r  in t eg ra t ing  and s impl i fy ing ,  we  obtain:  

I;. pU** - - u%; 

p2  1 
2-% ~ - -  (EYT]lY @ eZ~]lz); W~2x_ ~]ly~lz; 

Ex g z 

111i 1 I 

l ~ l J '  .o " ~j 

(5) 

(6)  

(7) 

(8) 

(9) 

Then  I S = 0 

(10) 

To d e t e r m i n e  the coo rd ina t e  funct ions  we in i -  

(11) 

Fo r  se lec ted  ~iy  and (&z, we have ~lj = 5 / 2 .  F r o m  condit ion (4) i t  fol lows that  

h~(~= + 1 ) = 0 .  (12) 

We obtain  the  solut ion of Eq. (11), sub jec t  to the condit ions (12), in  the f o r m  

s ~ -  1 ch a ~  = g--T %~ (13) 

We r e m a r k  that  to solve  the p r o b l e m  by Ga le rk in ' s  method,  the funct ion ~Olx = 1 - x  2 would have had 
to be  g iven beforehand.  

The solut ion obtained by KantorovichVs method has  the fol lowing p rope r t i e s :  a) fo r  ly,  z --" ~ e x p r e s -  
s ions  fo r  the t e m p e r a t u r e  f ield in an  unbounded plate a r e  not obtainable;  b) in bodies  with diagonal  s y m m e -  
t r y  (cube, squa re  p r i sm) ,  one should a l so  have diagonal  s y m m e t r y  of the  t e m p e r a t u r e  field, fo r  example ,  

N ( x = a ,  y ~ b ,  z = c ) = N ( x = b ,  y = a ,  z = c ) ,  
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T A B L E  1. C o m p a r i s o n  of A p p r o x i m a t e  (din) and Exact  (N) Solutions 
at  the Cen te r  of a Pa ra l l e l ep iped  

l z 

I x 

0,5 

0,8 

t,0 

[2 

0 
0,5 
0,8 
1,0 

0,5 
0,8 
1,0 

0,8 
1,0 
1,0 

0,500 
0,447 
0,351 
0,289 

0,423 
0,342 
0,286 
0,293 
0,253 
0,224 

m=l 

~,% 

0,782 65,6 
0,626 40,0 
0,476 35,5 
0,391 35,0 
0,521 23,0 
0,413 21,0 
0,348 21,0 

0,343 17,0 
0,296 17,0 
0,260 15,6 

0,500 
0,453 
0,356 
0,293 

0,419 
0,339 
0,283 
0,289 
0,250 
0,221 

m=2 6 , C  

0,0 
+I  ,5 
+1,5 
+1,5 

--1,0 
--1,0 
--0,9 

--1,3 
--1,2 
--1,3 

0,500 0,0 
0,452 . @1,3 
0,355 +1,3 
0,292 @I ,3 

0,401 --5,1 
0,325 --5,0 
0,273 --4,6 

0,282 --3,8 
0,244 --3,5 
0,218 --2,5 

however  the s y m m e t r y  is v io la ted  be c a use  of the d i s s i m i l a r  f o r m  of the coord ina te  funct ions  ~O2x and q~ly, r 

%~ (x = a) :/: +,y (y = a) : %~ (z = a); 

e) in c o n t r a s t  to Ga l e rk in ' s  method the method of Kan torov ieh  a l lows one to pa r t i a l ly  accoun t  f o r  p r o p e r -  
t ies  of the o p e r a t o r  L and to obtain a coord ina te  funct ion with r e s p e c t  to x, which admi t s  of a l imi t ing  
a p p r o a c h  to the  exact  so lu t ion  fo r  l x ~ 0 and l x ~ r162 

The p r o b l e m  h e r e  is to keep the m e r i t o r i o u s  p r o p e r t y  c) of  K a n t o r o v i c h ' s  method and at  the s a m e  
t ime  r id  o u r s e l v e s  of i ts  d r a w b a c k s  a), b). 

As was  pointed out, the funct ion ~2x is "be t t e r "  than the funct ion r  in the s ense  that  it t akes  into 
accoun t  the  p r o p e r t i e s  of the o p e r a t o r  L. But s ince  al l  the coord ina te  axes  a r e  equivalent ,  then by ap -  
plying K a n t o r o v i c h ' s  method independent ly  a long the y and z axes ,  we could obtain p r e c i s e l y  the s a m e  
e x p r e s s i o n s  for  q~2y, O2z, and thus fo r  al l  the axes  

%j = 1 chp~j)- 
chp2 j , j =  x, y, z. 

In the  s e n s e  indica ted  above,  the se t  of funct ions  q~2j is be t t e r  than the se t  ~olj. T h e r e f o r e  if  we now apply 
G a l e r k i n ' s  method,  putt ing co 2 = q~2xq~2yq~2z, we can  e l imina te  the d rawbacks  a), b) and i n c r e a s e  the a c -  
curacy .  M o r e o v e r  an a p p r o x i m a t e  so lu t ion  is  de t e rmined  by the f o r m u l a  v~ 2 = C2r and the cons tant  C 2 
i s  obtained f r o m  condi t ion (10). Next, putt ing ~ = f3xq~2yqO2z, and aga in  apply ing  K a n t o r o v i c h ' s  method,  we 
can find an  " i m p r o v e d "  funct ion q~3x, and a l so  ~3y and r This ,  in  turn ,  a l lows us,  us ing Ga le rk in ' s  
method,  to f ind  C3, and so on. We shal l  cal l  each s u c c e s s i v e  appl ica t ion  of the two methods ,  that  of Kan to ro -  
r i c h  (for de t e rmi n i ng  the q~mj) and of Ga le rk in  (for f inding the Cm) , a s tep .*  Beginning with the second 
s top (m = 2), the f o r m  of the funct ions  q~mj does not change,  and with the th i rd  s tep,  the f o r m  of the Pmj. 
This  enables  us  to obtain r e c u r s i o n  f o r m u l a s  f o r  the 6m" 

We d e t e r m i n e  C m f r o m  condit ion (10). We find 

Taking  into account  tha t  

2 +~j = Pro; (~0mj - -  1); 

~,~j : 1 chpmj] 
ch Pro j- '  

we find, f r o m  Eq. (10), a f t e r  in t eg ra t ing  and s impl i fy ing:  

C m = 

I ih Pro1 
~ m x  l ] m y ' q m z  Pray 

; ~lm~= 3 thP~d q 1 ~ f ; ~  (nmi - 1 )  1 
i = x , y , z  2 P m j  2ch~ PmJ 

p~ 1 [ uPm-l,y(%n-',y 1) e z m x  = - -  E 2 _ _  + ~p~_,,~ (,1~_~,~ 1)]. 
8x 

* Not to be confused  with an  app rox ima t ion  in the sum (1). 

(14) 

(15) 
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T A B L E  2. E r r o r s  made  in Calculat ing,  by Approx ima te  
Methods,  the Cent ra l  (50) and Mean-Vo lume  (SV) T e m -  
p e r a t u r e s  in an  I so t rop ie  Cube 

Approximating .method used 

~ I I I ' 1 2 8 4 5 6 7 

% +23,9 I +1 ,6 
- - 9 , 6  - - 4 , 2  

+ 9 , 3  - - 2 5 , 8  
- - 3 , 0  - - 3 9 , 0  

+31,0 --21,3 --2,5 
+7,7 --0,3 --0,3 

F o r  m = 2 

5 1 
P L  = - -  - -  (~,, + ~,)" 

We find Pmy and Pmz in a s i m i l a r  way. 

A d i r ec t  appl ica t ion  of Ga le rk in ' s  method,  with a p r io r i  a s s ignmen t  of ~01j, y ie lds  the e x p r e s s i o n  

25 (1 - -~ )  (1 --g~) (1 - - z  =) 
~x = 32 e x + e u + e z 

for  0, which can a l so  be obtained f r o m  the r e l a t ions  (14), (15) by putt ing pj = 0 into them and r e so lv ing  the 
i nde t e rminac i e s .  T h e r e f o r e ,  a p r io r i  a s s i g n m e n t  of ~o~j can be  looked upon as  the f i r s t  s tep  (m = 1) in f i n d -  
ing an a p p r o x i m a t e  solution,  whe re i n  p~j = 0. 

In p r ac t i c a l  ca lcu la t ions  one should use  the solut ion fo r  m = 2. As  the number  of s teps  (m) i n c r e a s e s  
the s u c c e s s i v e  solut ions  (Om) conve rge  to a l imi t  ( ~  ~ N), which is  independent  of the choice  of ~0tj, 
w h e r e a s  fo r  smal l  m (m = 1, 2, 3, . . . ) the solut ion is sens i t ive  to the choice  of ~01j. If  the v a l u e s  of ~o~ 
define the a c c u r a c y  of the p roposed  method in  this  way, the de r iva t ions  ~1, ~2, ~3, - - �9 f r o m  the exac t  so lu -  
t ion a re ,  to a s igni f icant  degree ,  r a n d o m  and depend on the  f o r m  of ~oij. I t  m a y  happen, by chance,  that  
~2 will  give be t t e r  a g r e e m e n t  with the exact  solut ion than ~o~. One should expect  in this  connect ion,  how-  
ever ,  that  ~ oo and ~2 a r e  c l o s e r  to N than ~1. F o r m u l a s  (14), (15) w e r e  used in ca lcu la t ing  the va lues  of 
~1, 02, and 0~  at  the point x = y = z = 0 for  para l le lep ipeds  of va r i ous  conf igura t ions .  The r e s u l t s  w e r e  
c o m p a r e d  with the exact  so lut ion [3] 

| ch ~---k 

N(0, 0, 0 ) =  64 S ~  2 
~4 (2p + 1) (2q + 1) k 2 ' 

p=O q=O 

k = V (2q@ 1)~ex+ (2p+ 1)2%. 

In the computa t ions  it  was  a s s u m e d  that ~x = ~y = ~z = ~m and 1 m = I z. Resu l t s  of the c o m p a r i s o n  
a r e  shown in Table  1. Re la t ive  e r r o r s  (Sin) w e r e  de te rmined  a c c o r d i n g  to the f o r m u l a  

6 . , '  ~ ' ~ - N  100%. 
N 

The c o m p a r i s o n  was  made  at the cen te r  s ince  the re  the e r r o r s  of the Gale rk in  and Kan torov ich  m e t h -  
ods a r e  the l a rges t .  In Tab le  2 we give the e r r o r s  made  in de te rmin ing ,  by  va r i ous  a p p r o x i m a t e  methods ,  
the cen t ra l  and m e a n - v o l u m e  t e m p e r a t u r e s  of an i so t rop ic  cube: 1 ) G a l e r k i n ' s  method,  ~olj = cos (1:/2)'j; 2) 
Ga le rk in ' s  method,  ~tj  = 1 -~2;  3) K a n t o r o v i c h ' s  method,  ~o~j = 1 - j~; 4) method of co l loca t ions ;  ~0j = 1 - j2, 
point of co l loca t ions  j = 1 / 2 ;  5) method of l eas t  squares ,  ~0j = I - j2; 6) the method of this paper  with m = 2; 
7) the method of this  paper  for  m ~ oo. The deta i l s  of methods  ~, 5 a r e  p re sen ted  in [4]. 

A genera l  ana ly s i s  of the a c c u r a c y  of the p roposed  scheme ,  as  well a s  that  of o the r s  and, in p a r t i c u -  
la r ,  that  of Galerk in  [1, 2], is  difficult .  T h e r e f o r e  the data given in the tab les  a re ,  meanwhi le ,  fo r  a 
s ingle  a c c u r a c y  c r i t e r ion .  

The method proposed  he re  can be r e c o m m e n d e d  not only for  the p rob l em we have cons ide red ,  but a l so  
for  the case  of a f ini te  cy l inder ,  and a l so  fo r  q v  = qv (  x, Y, z). Fo r  these  p rob lems  this way  of  d e t e r m i n i n g  
the coord ina te  funct ions  is comple te ly  r i g o r o u s  s ince  they f o r m  a comple te  sys t em.  Using the r e l a t ions  
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(1)-{4) an a rb i t r a r i ly  better approximation to the exact solution can be obtained. However, in solving ap-  
plied problems it proves to be the case that not only the principal convergence of the sys tem of functions 
is important  but a lso the possibility of obtaining sa t is factory accuracy  in the very  f i rs t  approximation. 
If we proceed f rom this uti l i tarian approach, there is no need to construct  a complete sys tem of functions. 
It is sufficient to find a prescr ip t ion enabling us to successfulIy  construct  a f i rs t  approximation. 

Then the domain of applicability of the proposed method can be extended even to homogeneous boundary 
conditions of the third Mnd: 

ON +B i  N = 0 ;  Bs= ro)=--=+B~O. (16) 
�9 j~=~ ~ '  o/ - 

For boundary conditions (16) the fo rm of the approximate solution (3) is inadmissible;  however, by 
just res t r ic t ing  ourse lves  to the approximation, we can obtain the following recurs ion  formulas:  

"~m = Crngmx%nugmz; %nS = 1 -- ch Pmfi-; 
ara i 

Tlmx TIray'l]raz Pro1 cm = = ; ant I - sh pnq + ch Pmfi 
e sPmi( ~lmi--1) B i 

i=x,g,z 

gx 

= ( 1 sh P,.s 1 2sh Pros , 4Pros 2 
-r- a2 " ",. \ pmiami . Pmflmy ml 

1 2 p L  = - -  [~pm_, . . (~- , .~  D + ~p.,-1' ~(~,~_~.~- a)], 

1 B 
1 + -  2- j 
2 1 + 5 - s ~ +  2 s~ 

C 1 = lh:Jlx~rllz ; 
Z esBs~u 

]~x ,u . z  

qo~j = 1 + ~-~-s (1 --x2). 

When Bj ~ ~, these relat ions become those of Eqs. (14), (15) for boundary conditions of the f i rs t  
kind. Although it is difficult to construct  a convergent sys tem of functions for Bj * % the f i r s t  approxi-  
mation here gives bet ter  agreement  with the exact solution than that with Bj ~ 0. When Bj ~ 0, then 5 
-~ 0 also. This means that for m = 2, for  all positive Bj and ej, the e r r o r  made in calculating the t em-  
pera ture  in the parallelepiped does not exceed 1.5%. For  a finite cylinder the e r r o r  is even less  (two- 
dimensional problem). 

The method given here  can also be used for  nonhomogeneous conditions. This is, however, a prob- 
lem in itself and outside the scope of this paper. We mere ly  r e m a r k  that the e r r o r  in this case  turns out 
to be l a rge r  (5 ~ 10%). 

The method proposed makes it possible to obtain an approximate solution of some boundary prob-  
lems in a re la t ively  simple fo rm with sa t i s fac tory  accuracy.  

d 

N 
V, S 
x, y, z 

~x, ~y, ~ z 
t 

qv 
lx, /y, lz 
/m, Zm, qm 
m 

NOTATION 

is the approximate solution of boundary-value problem; 
is the exact solution of boundary-value problem; 
are the region investigated and its surface, respectively, 
are the coordinates; 
are the thermal conductivity coefficients in the x, y, z directions; 
is the temperature; 
is the energy source density in region V; 
are the semiedge lengths of parallelepiped in the x, y, z directions; 
are the scale values of length, thermal conductivity, and flow density; 
is the step number in approximating process; 
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60, 6 V 

B] 

1. 

2. 
3. 

4. 

a r e  the re la t ive  e r r o r s  made in calculating the maximum and mean-volume t empera tu res  by ap-  
proximate methods; 
is the Blot number on the boundaries- j  = ~1. 
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