ON THE SELECTION OF COORDINATE FUNCTIONS FOR THE
SOLUTION OF BOUNDARY PROBLEMS BY GALERKIN'S METHGD
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We propbse a method for determining the coordinate functions to be employed in Galerkin's
method for the solution of boundary problems, which increases significantly the precision of
the calculations in a first approximation,

Galerkin's method, because of its simplicity and universality, has found wide application in many
problems of mathematical physics.

An approximate solution () of a boundary problem is represented in the form of a linear combination
of coordinate functions

= NBCu, (1)
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The constants C; are determined from the orthogonality condition [1]:

I,—1I3=0; 1V::jjyt4ﬁ)%dv; Is==5EI%ﬁ)%dS. (2)
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Here L is the differential operator of the boundary problem; I' is the operator of the boundary conditions.

The functions u; must possess the property of completeness in order for the approximate solution
(1) to converge to the exact solution. This property is possessed, in particular, by algebraic and tri-
gonometric polynomials. For homogeneous boundary conditions the convergence may be improved sub-
stantially by seeking « in the form [1]

O=0( +Bx+Dy+Ez4...). ‘ (3)

Here w(x, y, 2z} is an arbitrary function, which, together with its partial derivatives of arbitrary order in
a region V, is nonnegative and continuous and satisfies on the surface of the region S the condition

@ (S) = 0, (4

As pointed out in [2], one of the fundamental drawbacks of Galerkin's method is the following: the
properties of the boundary problem operator are accounted for by only a finite number of constants (Cj).
Kantorovich's method, applied to ordinary differential equations [1], remedies this drawback only par-
tially,

The chief merit of Galerkin's method, namely its simplicity, is maintained only when, with satis-
factory precision, one can limit oneself to the first approximation in the sum (1). Further precision
{second, and further, approximations) leads to substantial complexity in the computational formulas.

We present below a method for selecting the coordinate functions, which enables us to obtain a high
degree of precision with only the first approximation.

We restrict ourselves to a consideration of homogeneous boundary conditions of the first kind. We
illustrate the method by using, as an example, the heat conduction equation for an anisotropic homogeneous
parallelepiped with internal heat sources:
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with the boundary conditions:

Hj=x1)=0; j==xy, 2 (6)

In dimensionless form, assuming for simplicity that gy = const, we obtain

a *N *N
&y —{— g, 7 +e, i +1=0;
N({G=+1)=0;
A2 < th,
s == m 1 = : N =
& AR ! ; 7, 2 12 (7
For the differential operator we have the expression

oy 00
L@)=e, N —{—sy e +e, 62 + 1. (8)

For homogeneous boundary conditions of the first kind,
L ®) =4(S). (9)

We seek an approximate solution (#) in the form (3), taking into account the condition (4). ThenIg =0
and, consequently,

I,=0. (10)
We restrict ourselves to the first approximation 4 = Cw. To determine the coordinate functions we ini-
tially use Kantorovich's method. We write 4 in the form
4= foq)lyq)lz; Pyy = 1 _§2§ Q=1 —_22.
Then
L(®) = &,/ 91,%1; — [ (8,91, + £,y) -+ 1.

The orthogonality conditions may be written as follows [1]:

i
S L#) (Plyq)lzdydz =

0
Afterv integrating and simplifying, we obtam:

f;x —pierx = _ch;

i
P, = . (&M T eM)s W= Ty,
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For selected P1y and ¢z, We have My = 5/2. From condition (4) it follows that
far (6= £ 1) =0. (12)
We obtain the solution of Eq. (11), subject to the conditions (12), in the form

,F&(l_fhpzxf):&

e 1
P ch p,, P, ez (13)

We remark that to solve the problem by Galerkin's method, the function ¢;x =1 —x* would have had
to be given beforehand.

The solution obtained by Kantorovich's method has the following properties: a) for ly,z = © expres-
sions for the temperature field in an unbounded plate are not obtainable; b) in bodies with diagonal symme-~
try (cube, square prism), one should also have diagonal symmetry of the temperature field, for example,

Nix=a y=0b z=c)=Nx=b, y=a, z=10),

228



TABLE 1. Comparison of Approximate ($y,) and Exact (N) Solutions
at the Center of a Parallelepiped

m=1 m=2 m=m .

_l_z_ i N

Iy y 3 8, % 8 8, %

@
=
B

0 0,500 | 0,782 65,6 | 0,500 0,0 | 0,500 0,0
0,5 | 0,447 | 0,6% 40,0 | 0,453 | 41,5 | 0,452 .| 41,3
0,8 | 0,351 | 0,476 35,5 | 0,35 | 41,5 | 0,35 | 41,3
1,0 | 0,289 | ¢391 35,0 10,203 | 41,5 | 0,292 | 1,3

0,5 0,5 | 0,423 | 0,521 23,0 | 0,419 | —1,0 | 0,401 —5,1
0,8 | 0,342 | 0,413 21,0 | 0,333 | —1,0 | 0,355 | —5,0
1,0 ( 0,286 | 0,348 21,0 | 0,283 | —0,9 | 0,273 | —4,8
0,8 0,8 1 0,293 | 0,343 17,0 | 0,289 | —1,3 | 0,282 | —3.8
1,0 | 0,253 | 0,29 17,0 | 0,250 | —1,2 | 0,244 | —3,5
1,0 1,0 | 0,224 | 0,260 156 | 0,221 | —1,3 | 0,218 | —2,5

however the symmetry is violated because of the dissimilar form of the coordinate functions @yxand @1y, Pz
(PZx(x - a) # cPly (y = CZ) = Q12 (Z = a);

¢) in contrast to Galerkin's method the method of Kantorovich allows one to partially account for proper-
ties of the operator L and to obtain a coordinate function with respect to x, which admits of a limiting
approach to the exact solution for Iy — 0 and Ix — .

The problem here is to keep the meritorious property ¢) of Kantorovich's method and at the same
time rid ourselves of its drawbacks a), b).

As was pointed out, the function ¢,x is "better” than the function ¢,y in the sense that it takes into
account the properties of the operator L. But since all the coordinate axes are equivalent, then by ap-
plying Kantorovich's method independently along the y and z axes, we could obtain precisely the same
expressions for ¢,y, ¢,z, and thus for all the axes

ch sz_]:

Pgj == [— Chpzj

v J=X% 4 2

In the sense indicated above, the set of functions ¢, is better than the set ¢, j- Therefore if we now apply
Galerkin's method, putting w, = PoxPay oz, We can eliminate the drawbacks a), b) and increase the ac-
curacy. Moreover an approximate solution is determined by the formula 4, = Cyw,, and the constant C,

is obtained from condition (10). Next, putting ¢ = f3an2y¢72z, and again applying Kantorovich's method, we
can find an "improved" function ¢;x, and also D3y and ¢35. This, in turn, allows us, using Galerkin's
method, tofind C;, and so on. We shall call each successive application of the two methods, that of Kantoro-
vich (for determining the </’mj) and of Galerkin (for finding the Cy,), a step.* Beginning with the second
step (m = 2), the form of the functions Ymj does not change, and with the third step, the form of the ppyj.
This enables us to obtain recursion formulas for the 4.

We determine Cy, from condition (10). We find
L(0,) = Crn (897, 0myPmz T 897, PmePms T €97, 0raPpy] -+ 1.
Taking into account that

”

;= P (@ms — 1);

. (19)
Py =1 — -—ﬁcfh”;i ,
we find, from Eq. (10), after integrating and simplifying:
| — BPm;
C,— Mnanyhmz . T Pmj ;
2 eyt e
- " " (15)

1
p,znx = -a“’ [Eypfn._lyy (nm——l,y - 1) -+ Ezp,?n_l z (nm—-‘l,z - l)] .
x

*Not to be confused with an approximation in the sum (1).
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TABLE 2. Errors made in Calculating, by Approximate
Methods, the Central (6)) and Mean-Volume (dy) Tem-
peratures in an Isotropic Cube

Approximating -method used

SRR l

80, % +23 9 | +15,6 95,8
oy, % 4.9 —39.0

Form =2

5 1
p;x = 3—- 8—(?,!/ —‘}“Bz)-
x

We find Pmy and py,y in a similar way.
A direct application of Galerkin's method, with a priori assignment of Pt yields the expression

25 (1=)(1—H(1—32)

4= 39 e, +e, e

for ¢4, which can also be obtained from the relations (14), (15) by putting pj = 0 into them and resolving the
indeterminacies. Therefore, a priori assignment of @y can be looked upon as the first step (m =1) in find-
ing an approximate solution, wherein p;; j=0.

In practical calculations one should use the solution for m = 2. As the number of steps (m) increases
the successive solutions (#,,) converge to a limit (J,, # N), which is independent of the choice of ¢, i
whereas for small m (m =1, 2, 3, . . . ) the solution is sensitive to the choice of @1 If the values of
define the accuracy of the proposed method in this way, the derivations 4y, &, ¥, . . . from the exact solu-
tion are, to a significant degree, random and depend on the form of ¢y5. 1t may happen, by chance, that
49 will give better agreement with the exact solution than 4,,. One should expect in this connectiop, how-
ever, that & , and &4, are closer to N than ;. Formulas (14), (15) were used in calculating the values of
&, 9, and oo at the point X =y =z = 0 for parallelepipeds of various configurations. The results were
compared with the exact solution [3]

1 .
(—Drtaf1—
( ch£k>
reon-23 -
ad O +DEADE

p=0

k=V @1 e, + @1 s,

In the computations it was assumed that Ay = Ay = Ay = Ay and Iy, =1,. Results of the comparison
are shown in Table 1. Relative errors (0,,) were determined according to the formula
B, —N

8, = 100%.

The comparison was made at the center since there the errors of the Galerkin and Kantorovich meth-
ods are the largest. In Table 2 we give the errors made in determining, by various approximate methods,
the central and mean-volume temperatures of an isotropic cube: 1) Galerkln s method, o j = cos (r/2)3; 2)
Galerkin's method, @15=1— j%; 3) Kantorovich's method, @15 = 1- _] ; 4) method of collocations; =1~ i,
point of collocations j = 1/2; 5) method of least squares, ¢;=1~ % 6) the method of this paper with m = 2;
7) the method of this paper for m — «. The details of methods 4, 5 are presented in [4].

A general analysis of the accuracy of the proposed scheme, as well as that of others and, in particu-
lar, that of Galerkin [1, 2], is difficult. Therefore the data given in the tables are, meanwhile, for a
single accuracy criterion.

The method proposed here can be recommended not only for the problem we have considered, but also
for the case of a finite cylinder, and also for qy =y (x, y, z). For these problems this way of determining
the coordinate functions is completely rigorous since they form a complete system. Using the relations
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(1)-(4) an arbitrarily better approximation to the exact solution can be obtained. However, in solving ap-
plied problems it proves to be the case that not only the principal convergence of the system of functions
is important but also the possibility of obtaining satisfactory accuracy in the very first approximation.
If we proceed from this utilitarian approach, there is no need to construct a complete system of functions.
It is sufficient to find a prescription enabling us to successfully construct a first approximation.

Then the domain of applicability of the proposed method can be extended even to homogeneous boundary

conditions of the third kind: 3
N
[—— +B,-NJ —0; B= 44, @)

3 7=+I J }\4]' a’ - 77

0y %

i

'
1
[>]
=3

(16)
For boundary conditions (16) the form of the approximate solution (3) is inadmissible; however, by
just restricting ourselves to the approximation, we can obtain the following recursion formulas:

chppi |

mj

ﬁm = Cmcpmx(Pmy(sz; Pmj = -

N Ty Mo Prmj
C. - smymz . g,.=-L2 shp .1 chp,
m 2 Ejp?ni(nmj_l) ™ Bj ! "
j=x.y.z
| h2pny 1\
- (l—— Shpmj ) 1 — QShpmJ' e 4pmi 2 -
Nmj = o I a ’
Puni®mj Prmjm; ’ mj
1
pfnx = [i.".l!p2 —1.y (nm—-Ly — 0+ szil-‘l.z (nm—-l,z - 1)];

€y

1 b8
ngz?(SyBymy'i‘sszThz); Ny = 9 ) 5 >
|4+ 2B+ -2 B
) R

C, = NieT1yMiz ;e =1+ _32_1_(1 _;2)

2 eBimy

j=x9.2

When B; — «, these relations become those of Egs. (14), (15) for boundary conditions of the first
kind. Although it is difficult to construct a convergent system of functions for B; = «, the first approxi-
mation here gives better agreement with the exact solution than that with B; — 0. When B; — 0, then 6
— 0 also. This means that for m = 2, for all positive By and €5, the error made in calculating the tem-
perature in the parallelepiped does not exceed 1.5%. For a finite cylinder the error is even less (two-
dimensional problem). ‘

The method given here can also be used for nonhomogeneous conditions. This is, however, a prob-
lem in itself and outside the scope of this paper. We merely remark that the error in this case turns out
to be larger (6 =~ 10%).

The method proposed makes it possible to obtain an approximate solution of some boundary prob-
lems in a relatively simple form with satisfactory accuracy.

NOTATION
& is the approximate solution of boundary-value problem;
N is the exact solution of boundary-value problem;
v, S are the region investigated and its surface, respectively,
X, ¥, Z are the coordinates;
Ax, Ays Ag are the thermal conductivity coefficients in the x, y, z directions;
t is the temperature;
avy is the energy source density in region V;
Ix, ly, 1y are the semiedge lengths of parallelepiped in the x, y, z directions;
Im, m, 9m are the scale values of length, thermal conductivity, and flow density;
m is the step number in approximating process;
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89, Oy are the relative errors made in calculating the maximum and mean-volume temperatures by ap-
proximate methods; _
Bj is the Biot number on the boundaries j = *1.
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